TABLE OF CONTENTS

						Page
INTRODUCTION					•	1
EQUIPMENT AND EXPERIMENTAL PROCEDURE		•				3
Extrusion Tooling						3
Materials	•		:			3 4
COLD HYDROSTATIC EXTRUSION OF 7075-0 AND DISPERSION-HARDENED						_
SINTERED ALUMINUM	·	·	·	·	•	5
7075-0 Aluminum Rounds	•	•	•	·	·	5 7
Dispersion-Hardened Sintered Aluminum.				÷		7
HYDROSTATIC EXTRUSION AND COMPACTION OF Ti-6Al-4V TITANIUM						
ALLOYS	•	•	•	•	•	10
Rounds			•			10
Compaction	•	•	•		•	12
HYDROSTATIC EXTRUSION OF WROUGHT TZM MOLYBDENUM ALLOY						
AND BERYLLIUM ROUNDS			•			13
HYDROSTATIC EXTRUSION OF SUPERALLOYS ALLOY 718 AND A286		•				21
HYDROSTATIC EXTRUSION AND DRAWING OF BERYLLIUM WIRE					•	21
REFERENCES						23

LIST OF TABLES

Page

Table 1.	Billet Lubricants Used for Hydrostatic Extrusion During This Report Period	5
Table 2.	Experimental Data for Cold Hydrostatic Extrusion of 7075-0 Aluminum and Dispersion-Hardened Aluminum	9
Table 3.	Experimental Data for Hydrostatic Extrusion of Ti-6Al-4V Titanium Alloy	11
Table 4.	Experimental Data for Hydrostatic Extrusion of TZM Molybdenum Alloy and Beryllium	16
Table 5.	Experimental Data for Hydrostatic Extrusion of Superalloys	22

LIST OF FIGURES

Figure 1.	Classification of Pressure - Displacement Curves Obtained in	
	Hydrostatic Extrusion	26
Figure 2.	Multipiece T-Section Dies Evaluated in Program	8
Figure 3.	Standard Die Profile and Two Dies Designed to Eliminate Cracking	
	in Brittle Materials	15
Figure 4.	Influence of Double Reduction Die on Cracking of Hydrostatic	
	Extrusions of Wrought TZM Molybdenum Alloy	17
Figure 5.	Influence of Die Design on Cracking in Hydrostatic Extrusions	SROVE
	of Beryllium	19
Figure 6.	Photomicrographs of Beryllium Cold Extruded at a Ratio of 4:1 by	
	Hydrostatic Extrusion Without Fluid Counterpressure	20